3.345 \(\int \frac{x^2}{\sqrt{1-c^2 x^2} (a+b \cosh ^{-1}(c x))^2} \, dx\)

Optimal. Leaf size=136 \[ -\frac{\sqrt{c x-1} \sinh \left (\frac{2 a}{b}\right ) \text{Chi}\left (\frac{2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{b^2 c^3 \sqrt{1-c x}}+\frac{\sqrt{c x-1} \cosh \left (\frac{2 a}{b}\right ) \text{Shi}\left (\frac{2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{b^2 c^3 \sqrt{1-c x}}-\frac{x^2 \sqrt{c x-1}}{b c \sqrt{1-c x} \left (a+b \cosh ^{-1}(c x)\right )} \]

[Out]

-((x^2*Sqrt[-1 + c*x])/(b*c*Sqrt[1 - c*x]*(a + b*ArcCosh[c*x]))) - (Sqrt[-1 + c*x]*CoshIntegral[(2*(a + b*ArcC
osh[c*x]))/b]*Sinh[(2*a)/b])/(b^2*c^3*Sqrt[1 - c*x]) + (Sqrt[-1 + c*x]*Cosh[(2*a)/b]*SinhIntegral[(2*(a + b*Ar
cCosh[c*x]))/b])/(b^2*c^3*Sqrt[1 - c*x])

________________________________________________________________________________________

Rubi [A]  time = 0.62644, antiderivative size = 175, normalized size of antiderivative = 1.29, number of steps used = 8, number of rules used = 8, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {5798, 5775, 5670, 5448, 12, 3303, 3298, 3301} \[ -\frac{\sqrt{c x-1} \sqrt{c x+1} \sinh \left (\frac{2 a}{b}\right ) \text{Chi}\left (\frac{2 a}{b}+2 \cosh ^{-1}(c x)\right )}{b^2 c^3 \sqrt{1-c^2 x^2}}+\frac{\sqrt{c x-1} \sqrt{c x+1} \cosh \left (\frac{2 a}{b}\right ) \text{Shi}\left (\frac{2 a}{b}+2 \cosh ^{-1}(c x)\right )}{b^2 c^3 \sqrt{1-c^2 x^2}}-\frac{x^2 \sqrt{c x-1} \sqrt{c x+1}}{b c \sqrt{1-c^2 x^2} \left (a+b \cosh ^{-1}(c x)\right )} \]

Antiderivative was successfully verified.

[In]

Int[x^2/(Sqrt[1 - c^2*x^2]*(a + b*ArcCosh[c*x])^2),x]

[Out]

-((x^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(b*c*Sqrt[1 - c^2*x^2]*(a + b*ArcCosh[c*x]))) - (Sqrt[-1 + c*x]*Sqrt[1 +
c*x]*CoshIntegral[(2*a)/b + 2*ArcCosh[c*x]]*Sinh[(2*a)/b])/(b^2*c^3*Sqrt[1 - c^2*x^2]) + (Sqrt[-1 + c*x]*Sqrt[
1 + c*x]*Cosh[(2*a)/b]*SinhIntegral[(2*a)/b + 2*ArcCosh[c*x]])/(b^2*c^3*Sqrt[1 - c^2*x^2])

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rule 5775

Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_
.)*(x_)]), x_Symbol] :> Simp[((f*x)^m*(a + b*ArcCosh[c*x])^(n + 1))/(b*c*Sqrt[-(d1*d2)]*(n + 1)), x] - Dist[(f
*m)/(b*c*Sqrt[-(d1*d2)]*(n + 1)), Int[(f*x)^(m - 1)*(a + b*ArcCosh[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d1
, e1, d2, e2, f, m}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && LtQ[n, -1] && GtQ[d1, 0] && LtQ[d2, 0]

Rule 5670

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*
Cosh[x]^m*Sinh[x], x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rubi steps

\begin{align*} \int \frac{x^2}{\sqrt{1-c^2 x^2} \left (a+b \cosh ^{-1}(c x)\right )^2} \, dx &=\frac{\left (\sqrt{-1+c x} \sqrt{1+c x}\right ) \int \frac{x^2}{\sqrt{-1+c x} \sqrt{1+c x} \left (a+b \cosh ^{-1}(c x)\right )^2} \, dx}{\sqrt{1-c^2 x^2}}\\ &=-\frac{x^2 \sqrt{-1+c x} \sqrt{1+c x}}{b c \sqrt{1-c^2 x^2} \left (a+b \cosh ^{-1}(c x)\right )}+\frac{\left (2 \sqrt{-1+c x} \sqrt{1+c x}\right ) \int \frac{x}{a+b \cosh ^{-1}(c x)} \, dx}{b c \sqrt{1-c^2 x^2}}\\ &=-\frac{x^2 \sqrt{-1+c x} \sqrt{1+c x}}{b c \sqrt{1-c^2 x^2} \left (a+b \cosh ^{-1}(c x)\right )}+\frac{\left (2 \sqrt{-1+c x} \sqrt{1+c x}\right ) \operatorname{Subst}\left (\int \frac{\cosh (x) \sinh (x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c^3 \sqrt{1-c^2 x^2}}\\ &=-\frac{x^2 \sqrt{-1+c x} \sqrt{1+c x}}{b c \sqrt{1-c^2 x^2} \left (a+b \cosh ^{-1}(c x)\right )}+\frac{\left (2 \sqrt{-1+c x} \sqrt{1+c x}\right ) \operatorname{Subst}\left (\int \frac{\sinh (2 x)}{2 (a+b x)} \, dx,x,\cosh ^{-1}(c x)\right )}{b c^3 \sqrt{1-c^2 x^2}}\\ &=-\frac{x^2 \sqrt{-1+c x} \sqrt{1+c x}}{b c \sqrt{1-c^2 x^2} \left (a+b \cosh ^{-1}(c x)\right )}+\frac{\left (\sqrt{-1+c x} \sqrt{1+c x}\right ) \operatorname{Subst}\left (\int \frac{\sinh (2 x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c^3 \sqrt{1-c^2 x^2}}\\ &=-\frac{x^2 \sqrt{-1+c x} \sqrt{1+c x}}{b c \sqrt{1-c^2 x^2} \left (a+b \cosh ^{-1}(c x)\right )}+\frac{\left (\sqrt{-1+c x} \sqrt{1+c x} \cosh \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{2 a}{b}+2 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c^3 \sqrt{1-c^2 x^2}}-\frac{\left (\sqrt{-1+c x} \sqrt{1+c x} \sinh \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{2 a}{b}+2 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c^3 \sqrt{1-c^2 x^2}}\\ &=-\frac{x^2 \sqrt{-1+c x} \sqrt{1+c x}}{b c \sqrt{1-c^2 x^2} \left (a+b \cosh ^{-1}(c x)\right )}-\frac{\sqrt{-1+c x} \sqrt{1+c x} \text{Chi}\left (\frac{2 a}{b}+2 \cosh ^{-1}(c x)\right ) \sinh \left (\frac{2 a}{b}\right )}{b^2 c^3 \sqrt{1-c^2 x^2}}+\frac{\sqrt{-1+c x} \sqrt{1+c x} \cosh \left (\frac{2 a}{b}\right ) \text{Shi}\left (\frac{2 a}{b}+2 \cosh ^{-1}(c x)\right )}{b^2 c^3 \sqrt{1-c^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.274179, size = 117, normalized size = 0.86 \[ \frac{\sqrt{1-c^2 x^2} \left (\sinh \left (\frac{2 a}{b}\right ) \left (a+b \cosh ^{-1}(c x)\right ) \text{Chi}\left (2 \left (\frac{a}{b}+\cosh ^{-1}(c x)\right )\right )-\cosh \left (\frac{2 a}{b}\right ) \left (a+b \cosh ^{-1}(c x)\right ) \text{Shi}\left (2 \left (\frac{a}{b}+\cosh ^{-1}(c x)\right )\right )+b c^2 x^2\right )}{b^2 c^3 \sqrt{c x-1} \sqrt{c x+1} \left (a+b \cosh ^{-1}(c x)\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/(Sqrt[1 - c^2*x^2]*(a + b*ArcCosh[c*x])^2),x]

[Out]

(Sqrt[1 - c^2*x^2]*(b*c^2*x^2 + (a + b*ArcCosh[c*x])*CoshIntegral[2*(a/b + ArcCosh[c*x])]*Sinh[(2*a)/b] - (a +
 b*ArcCosh[c*x])*Cosh[(2*a)/b]*SinhIntegral[2*(a/b + ArcCosh[c*x])]))/(b^2*c^3*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a
 + b*ArcCosh[c*x]))

________________________________________________________________________________________

Maple [B]  time = 0.218, size = 377, normalized size = 2.8 \begin{align*} -{\frac{1}{ \left ( 4\,{c}^{2}{x}^{2}-4 \right ){c}^{3} \left ( a+b{\rm arccosh} \left (cx\right ) \right ) b}\sqrt{-{c}^{2}{x}^{2}+1} \left ( -2\,\sqrt{cx+1}\sqrt{cx-1}{x}^{2}{c}^{2}+2\,{c}^{3}{x}^{3}+\sqrt{cx-1}\sqrt{cx+1}-2\,cx \right ) }-{\frac{1}{2\,{c}^{3} \left ({c}^{2}{x}^{2}-1 \right ){b}^{2}} \left ( \sqrt{cx+1}\sqrt{cx-1}xc+{c}^{2}{x}^{2}-1 \right ) \sqrt{-{c}^{2}{x}^{2}+1}{\it Ei} \left ( 1,2\,{\rm arccosh} \left (cx\right )+2\,{\frac{a}{b}} \right ){{\rm e}^{-{\frac{b{\rm arccosh} \left (cx\right )-2\,a}{b}}}}}+{\frac{1}{ \left ( 4\,{c}^{2}{x}^{2}-4 \right ){c}^{3}{b}^{2} \left ( a+b{\rm arccosh} \left (cx\right ) \right ) }\sqrt{cx-1}\sqrt{cx+1}\sqrt{-{c}^{2}{x}^{2}+1} \left ( 2\,\sqrt{cx-1}\sqrt{cx+1}xbc+2\,{x}^{2}b{c}^{2}+2\,{\rm arccosh} \left (cx\right ){\it Ei} \left ( 1,-2\,{\rm arccosh} \left (cx\right )-2\,{\frac{a}{b}} \right ){{\rm e}^{-2\,{\frac{a}{b}}}}b+2\,{\it Ei} \left ( 1,-2\,{\rm arccosh} \left (cx\right )-2\,{\frac{a}{b}} \right ){{\rm e}^{-2\,{\frac{a}{b}}}}a-b \right ) }+{\frac{1}{ \left ( 2\,{c}^{2}{x}^{2}-2 \right ){c}^{3} \left ( a+b{\rm arccosh} \left (cx\right ) \right ) b}\sqrt{cx-1}\sqrt{cx+1}\sqrt{-{c}^{2}{x}^{2}+1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(a+b*arccosh(c*x))^2/(-c^2*x^2+1)^(1/2),x)

[Out]

-1/4*(-c^2*x^2+1)^(1/2)*(-2*(c*x+1)^(1/2)*(c*x-1)^(1/2)*x^2*c^2+2*c^3*x^3+(c*x-1)^(1/2)*(c*x+1)^(1/2)-2*c*x)/(
c^2*x^2-1)/c^3/(a+b*arccosh(c*x))/b-1/2*((c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c+c^2*x^2-1)*(-c^2*x^2+1)^(1/2)*Ei(1,2*
arccosh(c*x)+2*a/b)*exp(-(b*arccosh(c*x)-2*a)/b)/c^3/(c^2*x^2-1)/b^2+1/4*(c*x+1)^(1/2)*(c*x-1)^(1/2)*(-c^2*x^2
+1)^(1/2)/(c^2*x^2-1)/c^3*(2*(c*x-1)^(1/2)*(c*x+1)^(1/2)*x*b*c+2*x^2*b*c^2+2*arccosh(c*x)*Ei(1,-2*arccosh(c*x)
-2*a/b)*exp(-2*a/b)*b+2*Ei(1,-2*arccosh(c*x)-2*a/b)*exp(-2*a/b)*a-b)/b^2/(a+b*arccosh(c*x))+1/2*(c*x+1)^(1/2)*
(c*x-1)^(1/2)*(-c^2*x^2+1)^(1/2)/(c^2*x^2-1)/c^3/(a+b*arccosh(c*x))/b

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{c^{3} x^{5} - c x^{3} +{\left (c^{2} x^{4} - x^{2}\right )} \sqrt{c x + 1} \sqrt{c x - 1}}{{\left ({\left (c x + 1\right )} \sqrt{c x - 1} b^{2} c^{2} x +{\left (b^{2} c^{3} x^{2} - b^{2} c\right )} \sqrt{c x + 1}\right )} \sqrt{-c x + 1} \log \left (c x + \sqrt{c x + 1} \sqrt{c x - 1}\right ) +{\left ({\left (c x + 1\right )} \sqrt{c x - 1} a b c^{2} x +{\left (a b c^{3} x^{2} - a b c\right )} \sqrt{c x + 1}\right )} \sqrt{-c x + 1}} + \int \frac{2 \, c^{5} x^{6} - 5 \, c^{3} x^{4} +{\left (2 \, c^{3} x^{4} - c x^{2}\right )}{\left (c x + 1\right )}{\left (c x - 1\right )} + 3 \, c x^{2} + 2 \,{\left (2 \, c^{4} x^{5} - 3 \, c^{2} x^{3} + x\right )} \sqrt{c x + 1} \sqrt{c x - 1}}{{\left ({\left (c x + 1\right )}^{\frac{3}{2}}{\left (c x - 1\right )} b^{2} c^{3} x^{2} + 2 \,{\left (b^{2} c^{4} x^{3} - b^{2} c^{2} x\right )}{\left (c x + 1\right )} \sqrt{c x - 1} +{\left (b^{2} c^{5} x^{4} - 2 \, b^{2} c^{3} x^{2} + b^{2} c\right )} \sqrt{c x + 1}\right )} \sqrt{-c x + 1} \log \left (c x + \sqrt{c x + 1} \sqrt{c x - 1}\right ) +{\left ({\left (c x + 1\right )}^{\frac{3}{2}}{\left (c x - 1\right )} a b c^{3} x^{2} + 2 \,{\left (a b c^{4} x^{3} - a b c^{2} x\right )}{\left (c x + 1\right )} \sqrt{c x - 1} +{\left (a b c^{5} x^{4} - 2 \, a b c^{3} x^{2} + a b c\right )} \sqrt{c x + 1}\right )} \sqrt{-c x + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*arccosh(c*x))^2/(-c^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

-(c^3*x^5 - c*x^3 + (c^2*x^4 - x^2)*sqrt(c*x + 1)*sqrt(c*x - 1))/(((c*x + 1)*sqrt(c*x - 1)*b^2*c^2*x + (b^2*c^
3*x^2 - b^2*c)*sqrt(c*x + 1))*sqrt(-c*x + 1)*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1)) + ((c*x + 1)*sqrt(c*x - 1)
*a*b*c^2*x + (a*b*c^3*x^2 - a*b*c)*sqrt(c*x + 1))*sqrt(-c*x + 1)) + integrate((2*c^5*x^6 - 5*c^3*x^4 + (2*c^3*
x^4 - c*x^2)*(c*x + 1)*(c*x - 1) + 3*c*x^2 + 2*(2*c^4*x^5 - 3*c^2*x^3 + x)*sqrt(c*x + 1)*sqrt(c*x - 1))/(((c*x
 + 1)^(3/2)*(c*x - 1)*b^2*c^3*x^2 + 2*(b^2*c^4*x^3 - b^2*c^2*x)*(c*x + 1)*sqrt(c*x - 1) + (b^2*c^5*x^4 - 2*b^2
*c^3*x^2 + b^2*c)*sqrt(c*x + 1))*sqrt(-c*x + 1)*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1)) + ((c*x + 1)^(3/2)*(c*x
 - 1)*a*b*c^3*x^2 + 2*(a*b*c^4*x^3 - a*b*c^2*x)*(c*x + 1)*sqrt(c*x - 1) + (a*b*c^5*x^4 - 2*a*b*c^3*x^2 + a*b*c
)*sqrt(c*x + 1))*sqrt(-c*x + 1)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-c^{2} x^{2} + 1} x^{2}}{a^{2} c^{2} x^{2} +{\left (b^{2} c^{2} x^{2} - b^{2}\right )} \operatorname{arcosh}\left (c x\right )^{2} - a^{2} + 2 \,{\left (a b c^{2} x^{2} - a b\right )} \operatorname{arcosh}\left (c x\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*arccosh(c*x))^2/(-c^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*x^2 + 1)*x^2/(a^2*c^2*x^2 + (b^2*c^2*x^2 - b^2)*arccosh(c*x)^2 - a^2 + 2*(a*b*c^2*x^2 - a*
b)*arccosh(c*x)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\sqrt{- \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname{acosh}{\left (c x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(a+b*acosh(c*x))**2/(-c**2*x**2+1)**(1/2),x)

[Out]

Integral(x**2/(sqrt(-(c*x - 1)*(c*x + 1))*(a + b*acosh(c*x))**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\sqrt{-c^{2} x^{2} + 1}{\left (b \operatorname{arcosh}\left (c x\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*arccosh(c*x))^2/(-c^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(x^2/(sqrt(-c^2*x^2 + 1)*(b*arccosh(c*x) + a)^2), x)